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Abstract

An isochronous variant of the Ruijsenaars–Toda integrable many-body problem
is introduced, an equilibrium configuration of this dynamical system is
identified and by investigating the motions in its neighborhood Diophantine
relations are obtained.

PACS numbers: 02.30.Ik, 45.20.Jj

1. Introduction and main results

Some years ago a technique was introduced [1] which is suitable to modify certain dynamical
systems so that the modified systems thereby obtained are isochronous, featuring in their
phase space a fully dimensional region where all their solutions are isochronous, i.e. periodic
in all their degrees of freedom with a fixed period (independent of the initial data provided
they belong to the isochrony region; for a review of these findings see the recent monograph
[2]). If the original system is integrable, there are reasons [2] to expect that the region of
isochrony of the modified, isochronous system coincides with the entire phase space. It is
then clear that, if such an isochronous system possesses an equilibrium configuration, the
standard linearization of the equations of motion in its (infinitesimal) neighborhood yields a
matrix featuring a Diophantine property: indeed, since the eigenvalues of this matrix provide
the periods of the oscillations of the system in that neighborhood, and since this motion must
be completely periodic with a fixed period, all these eigenvalues must be integer multiples of
a known number. This technique has been applied repeatedly, taking as point of departure
various integrable systems (for a review see [2]). Its applicability requires two minor miracles:
firstly, the possibility of transforming the original, integrable system into an isochronous
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system; and secondly, the explicit identification of an equilibrium configuration, allowing one
to obtain—via a standard procedure, starting from the equations of motion of the isochronous
system—an explicit matrix characterizing the linearized equations describing the motion near
equilibrium. The outcome of this procedure is the explicit identification of a matrix with the
Diophantine property that all its eigenvalues are integer numbers. The order of this matrix
generally coincides with the number of dependent variables of the system that often can be
arbitrarily large. When attention is restricted to few dependent variables—hence the order of
the relevant matrix is small—the Diophantine property can be verified by computing explicitly
the eigenvalues of this matrix; in this manner it is also generally possible to conjecture the
specific values of these eigenvalues when the order of the matrix is instead arbitrary. In
some cases these conjectures have then been proven (see the monograph [2] and references
quoted there; indeed the goal to prove these conjectures has motivated a research development
involving orthogonal polynomials and discrete integrable systems [3–6]).

This paper provides one more example in which the two minor miracles mentioned above
do happen. The treatment is analogous to that of two previous papers [2, 7, 8], but the
conjectures generally yielded by this approach are in this case replaced by proven statements.
Our main results are the identification of the isochronous variant of the Ruijsenaars–Toda
model [9] (also called ‘relativistic Toda’, and hereafter referred to by the acronym RT),
as described in the following section, see (19), and the identification of the following two
tridiagonal M × M matrices A(M) and B(M) defined componentwise as follows:

A
(M)
1,1 = −M, A

(M)
1,2 = −(M − 1), (1a)

A
(M)
�,�−1 = −(� − 1 − M), A

(M)
�,�+1 = (� − M), � = 2, . . . ,M, (1b)

B
(M)
1,2 = M(M − 1), (2a)

B
(M)
2,2 = −2(M − 1)2, B

(M)
2,3 = (M − 1)(M − 2), (2b)

B
(M)
�,�−1 = (� − 1 − M)(� − 2 − M), B

(M)
�,� = −2(� − 1 − M)2,

B
(M)
�,�+1 = (� − M)(� − 1 − M), � = 3, . . . , M,

(2c)

with all their other matrix elements (i.e. all those not displayed above) vanishing, and the
statement that the 2M roots of the polynomial det[x21(M) +xA(M) +B(M)], of degree N = 2M

in x, are all integers, indeed that they are identified by the factorization

det[x21(M) + xA(M) + B(M)] =
[

M∏
m=1

(x − m)

][
M−1∏
m=0

(x + m)

]
= x(x − M)

M−1∏
m=1

(x2 − m2).

(3)

Here and throughout M is an arbitrary integer (larger than 2, M > 2, to avoid having to detail
separately trivial special cases), and of course 1(M) denotes the unit matrix of order M.

A related finding—instrumental to prove result (3), but of interest in its own right—is
obtained by introducing the polynomials p(ν)

n (x), of even degree n = 2m in x and depending
on an arbitrary parameter ν, defined by the formula

p(ν)
n (x) = det[x21(m) + xA(m,ν) + B(m,ν)], n = 2m, (4)

where the two tridiagonal m × m matrices A(m,ν) and B(m,ν) are defined (componentwise) as
follows:

A
(m,ν)
1,1 = −ν, A

(m,ν)
1,2 = −(ν − 1), (5a)
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A
(m,ν)
�,�−1 = −(� − 1 − ν), A

(m,ν)
�,�+1 = (� − ν), � = 2, . . . , m, (5b)

B
(m,ν)
1,2 = ν(ν − 1), (6a)

B
(m,ν)
2,2 = −2(ν − 1)2, B

(m,ν)
2,3 = (ν − 1)(ν − 2), (6b)

B
(m,ν)
�,�−1 = (� − 1 − ν)(� − 2 − ν), B

(m,ν)
�,� = −2(� − 1 − ν)2,

B
(m,ν)
�,�+1 = (� − ν)(� − 1 − ν), � = 3, . . . , m,

(6c)

with all their other matrix elements vanishing (and m an arbitrary integer larger than 2, m > 2).
As noted in the following section, these polynomials p(ν)

n (x) (of even degree n = 2m) can
also be defined via the three-term recursion relation

p
(ν)

2(m+1)(x) = [x2 − 2(m − ν)2]p(ν)
2m(x) + (m − ν)2[x2 − (m − 1 − ν)2]p(ν)

2(m−1)(x),

m = 2, 3, . . . , (7a)

with the initial assignments

p
(ν)
2 (x) = x(x − ν), (7b)

p
(ν)
4 (x) = x(x − ν)[x2 − (1 − ν)2]. (7c)

And it is then clear that the Diophantine factorization holds:

p
(m)
2m (x) =

[
m∏

�=1

(x − �)

] [
m−1∏
�=0

(x + �)

]

= x(x − m)

m−1∏
�=1

(x2 − �2), (8)

as implied by formulas (3) and (4), together with the observation that clearly

A(M,M) = A(M), B(M,M) = B(M), (9)

as implied by a comparison of (1) with (5) and of (2) with (6). But—as shown in the following
section—there holds in fact the following more general result:

p
(ν)
2m(x) = x(x − ν)

m−1∏
�=1

[x2 − (� − ν)2], (10)

which clearly reduces to (8) for ν = m.

This finding suggests introducing a second family of polynomials q(ν)
m (z), of degree m in

z, via the ansatz

p
(ν)
2m(x) = x(x − ν)q

(ν)
m−1(z), z = x2, (11)

so that also these polynomials are trivially factorized,

q(ν)
m (z) =

m∏
�=1

[z − (� − ν)2]. (12)

Moreover, these polynomials satisfy the three-term recursion relation

q(ν)
m (z) = [z − 2(m − ν)2]q(ν)

m−1(z) + (m − ν)2[z − (m − 1 − ν)2]q(ν)
m−2(z), (13a)

being indeed also defined (for all nonnegative integer values of their order m) by these recursion
relations together with the initial assignments

q
(ν)
0 (z) = 1, q

(ν)
1 (z) = z − (1 − ν)2, (13b)

3
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and they also satisfy the second recursion relation (for whose relevance see [3–6])

q(ν+1)
m (z) = q(ν)

m (z) + g(ν)
m q

(ν)
m−1(z), m = 1, 2, . . . , (14a)

with

g(ν)
m = m(m − 2ν). (14b)

The derivation of all these findings is detailed in the following section.

2. Derivation of the results

Our point of departure is the RT integrable dynamical system [9] characterized by the
Hamiltonian

H =
M∑

m=1

{
exp(pm)[1 + exp(qm−1 − qm)]

1
2 [1 + exp(qm − qm+1)]

1
2 − 2

}
, (15)

whose equations of motion are, for our purposes, conveniently written as follows [10, 11]:

a′
m = am(1 − am)(bm − bm+1), (16a)

b′
m = bm(bm−1am−1 − bm+1am). (16b)

Notation 1. Here am ≡ am(τ) and bm ≡ bm(τ) are the dependent variables and are related
to the canonical coordinates qm(τ), pm(τ) as follows:

am = exp(qm − qm+1)

[1 + exp(qm − qm+1)]
, (17a)

bm = exp(pm)[1 + exp(qm−1 − qm)]
1
2 [1 + exp(qm − qm+1)]

1
2 ; (17b)

while τ is of course the independent variable, and appended primes denote differentiation
with respect to τ. Here and hereafter (unless otherwise indicated) the index m runs from 1
to M, with M being an arbitrary positive integer (but occasionally we shall understand that
M > 2, to avoid having to single out trivial cases).

This dynamical system is complemented by the boundary conditions

a0 = aM = 0, b0 = bM+1 = 0 (17c)

(corresponding to q0 = −∞, qM+1 = +∞ and p0 = pM+1 = −∞, see (17)), which are
known to be compatible with its integrability [10]. Note that this system features formally
2M-dependent variables but has in fact only 2M − 1 nontrivial-dependent variables, since
the variable aM vanishes identically (see (17c), and note the compatibility of this condition
with (16a)).

This system is transformed into an isochronous system by introducing new dependent and
independent variables via the following assignment [2]:

αm(t) = am(τ), βm(t) = exp(it)bm(τ) (18a)

with

τ = −i[exp(it) − 1] (18b)

entailing (for simplicity) τ(0) = 0; hence αm(0) = am(0), βm(0) = bm(0). The equations of
motion of the isochronous system then clearly read

α̇m = αm(1 − αm)(βm − βm+1), (19a)

4
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β̇m − iβm = βm(αm−1βm−1 − αmβm+1), (19b)

and are complemented by the boundary conditions

α0 = αM = 0, β0 = βM+1 = 0. (19c)

Notation 2. Here and hereafter the superimposed dot indicates of course differentiation with
respect to the new (real) independent variable t (‘time’), and i is the imaginary unit, i2 = −1.

The autonomous character of this system (19) is the first of the two minor miracles
mentioned above.

As implied by the transformation (18)—together with the (Painlevé) property of the
solutions of the original dynamical system (16) to be meromorphic functions of their
independent variable τ —the property of isochrony of this system (19) reads

αm(t + 2π) = αm(t), βm(t + 2π) = βm(t). (20)

Next, let us consider the equilibrium configurations of this dynamical system, (19). They
are clearly characterized by the values ᾱm, β̄m of the dependent variables satisfying the system
of N = 2M algebraic equations

ᾱm(1 − ᾱm)(β̄m − β̄m+1) = 0, (21a)

−iβ̄m = β̄m(ᾱm−1β̄m−1 − ᾱmβ̄m+1), (21b)

complemented of course by the boundary conditions

ᾱ0 = ᾱM = 0, β̄0 = β̄M+1 = 0. (21c)

As can be easily verified (separately for m = 1, for m = 2, for m = 3, . . . ,M − 1 and
for m = M), a solution of this system of algebraic equations (21) reads

ᾱ1 = 1, β̄1 = −(M − 1)i, (22a)

ᾱm = −(M − m), β̄m = i, m = 2, . . . ,M (22b)

(note the consistency of (22b), for m = M , with (21c)).
This is not the only equilibrium configuration of the dynamical system (19), but it seems

to be the only one useful for our purposes. And the fact that this equilibrium configuration is
explicit is the second of the two minor miracles mentioned above.

Next, let us obtain the linearized system that characterizes the behavior of the isochronous
dynamical system (19) in the immediate neighborhood of this equilibrium configuration, (21).
This obtains, in the limit when ε is infinitesimal, by setting

αm(t) = ᾱm + εxm(t), βm(t) = β̄m + εym(t). (23)

Note that the isochronous character of αm(t) and βm(t), see (20), entails the analogous property
for xm(t) and ym(t):

xm(t + 2π) = xm(t), ym(t + 2π) = ym(t). (24)

The insertion of this ansatz (23) in the equations of motion (19) yields the linear system

ẋm = (1 − 2ᾱm)(β̄m − β̄m+1)xm + ᾱm(1 − ᾱm)(ym − ym+1), (25a)

ẏm − iym = β̄m(β̄m−1xm−1 − β̄m+1xm + ᾱm−1ym−1 − ᾱmym+1)

+ (ᾱm−1β̄m−1 − ᾱmβ̄m+1)ym, (25b)

5
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complemented of course by the boundary conditions (see (19c) and (21c))

x0 = xM = 0, y0 = yM+1 = 0. (25c)

And the insertion of the equilibrium data (22) in this system of ODEs yields the following
system of N = 2M − 1 linear first-order ODEs:

ẋ1 = Mix1, (26a)

ẋ� = −(M − �)(M − � + 1)(y� − y�+1), � = 2, . . . , M − 1, (26b)

ẏ1 = −(M − 1)x1 + (M − 1)iy2, (26c)

ẏ2 = (M − 1)x1 + x2 + iy1 + (M − 2)iy3, (26d)

ẏ� = −x�−1 + x� − (M − � + 1)iy�−1 + (M − �)iy�+1, � = 3, . . . ,M, (26e)

ẏM = −xM−1 − iyM−1. (26f )

Note that the last formula (26f ) coincides, via (25c), with the next-to-last formula (26e) with
� = M (hence, this is again a system of 2M − 1 first-order ODEs).

This system can clearly be reformulated as a system of M linear second-order ODEs for
the M-dependent variables, ym, reading

ÿ1 − iMẏ1 − i(M − 1)ẏ2 − M(M − 1)y2 = 0, (27)

ÿ2 + i(M − 1)ẏ1 − i(M − 2)ẏ3 + 2(M − 1)2y2 − (M − 1)(M − 2)y3 = 0, (28)

ÿ� + i(M − � + 1)ẏ�−1 − i(M − �)ẏ�+1 − (M − � + 1)(M − � + 2)y�−1

+ 2(M − � + 1)2y� − (M − �)(M − � + 1)y�+1 = 0, � = 3, . . . ,M, (29)

namely

ÿ + iA(M)ẏ − B(M)y = 0, (30)

where the two (constant) M × M matrices A(M) and B(M) are defined above, see (1) and (2),
and of course the M-vector y ≡ y(t) has the M components ym ≡ ym(t).

The general solution of this system of linear ODEs (30) is provided by the formula

y(t) =
2M∑
k=1

ck exp(ixkt)u
(k), (31)

where the 2M numbers xk are the 2M roots of the polynomial det[x21(M) + xA(M) + B(M)], of
degree 2M in x, the 2M constants ck are arbitrary and the 2M constant M-vectors are defined
appropriately.

The isochronous character, see (24), of this (general) solution of the system (30) entails
the Diophantine conclusion that the 2M numbers xk must all be integers.

The neater way to verify this result, and to moreover identify that these 2M integer
numbers xk are those implied by the right-hand side of the explicit factorization formula (3),

xm = m for m = 1, . . . , M, xm+M+1 = −m for m = 0, . . . ,M − 1, (32)

is to prove all the results reported in the previous section backwards, starting from the last
one reported there (while the order in which they are reported above reflects more faithfully
the sequential character of their original derivation, via theorems and conjectures analogous
to those of previous treatments [3, 7, 8]).

6
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Let us therefore define the polynomials q(ν)
m (z) via the explicit factorization formula (12).

It is then trivial to verify, by direct substitution, that these polynomials satisfy the two recursion
relations (13) and (14). Next, we define the polynomials p(ν)

n (x) via (11), so that they feature
the factorization (10); it is then trivial to also verify, again by direct substitution, that they
satisfy the recursion relation (7). The fact that (4) (with (5) and (6)) is consistent with these
three-term recursion relations (7) is then easily verified by evaluating the determinant of the
tridiagonal matrix C(m,ν)(x) ≡ x21(m) + xA(m,ν) + B(m,ν), by expanding it according to the
formula

det[C(m,ν)(x)] = C(m,ν)
m,m det[C(m−1,ν)(x)] − C

(m,ν)
m,m−1C

(m,ν)
m−1,m det[C(m−2,ν)(x)]

= (
x2 + B(m,ν)

m,m

)
det[C(m−1,ν)(x)]

− (
xA

(m,ν)
m,m−1 + B

(m,ν)
m,m−1

)(
xA

(m,ν)
m−1,m + B

(m,ν)
m−1,m

)
det[C(m−2,ν)(x)], (33)

entailed by the tridiagonal character of the matrices A(m,ν) and B(m,ν), by the fact that A(m,ν)
m,m

vanishes (see (5)) and, most importantly, by the fact that the matrix elements of these two
tridiagonal matrices are independent of their order m (see (5) and (6)); and then by using (4)
to identify this formula (33) with the recursion relation (7) (using the explicit expressions (5)
and (6)).

This completes the proof of the results reported in the previous section, since, as already
noted there, the factorization (3), or equivalently (8), is evidently a special case of the more
general factorization (10).

We complete this paper with two remarks.

Remark 1. Of course the factorization (12) entails that the polynomials q(ν)
m (z) satisfy the

two-term recursion relation

q(ν)
m (z) = [z − (m − ν)2]q(ν)

m (z), (34a)

which is easily seen to be compatible—indeed, to imply—the three-term recursion relation
(13a). And likewise the polynomials p

(ν)
2m(x) satisfy the two-term recursion

p
(ν)
2m(x) = [x2 − (m − 1 − ν)2]p(ν)

2(m−1)(x), (35)

in addition to the three-term recursion (7a).

Remark 2. Already in the original paper by Ruijsenaars [9] it was observed that the Poincaré
invariance of the RT model entails the existence of two commuting Hamiltonians, H+ ≡ H and
H−—one being the ‘time-reversed’ variant of the other—related by the involutive symmetry

qm → qm, pm → −pm. (36)

Hence, these two Hamiltonians read (compare with (15))

H± =
M∑

n=1

{
exp(±pm)[1 + exp(qm−1 − qm)]

1
2 [1 + exp(qm − qm+1)]

1
2 − 2

}
. (37)

In terms of the variables am and bm related to the canonical variables pm and qm by the
relations (17), the two Hamiltonian flows associated with H+ respectively H− read(

[am,H+]

[bm,H+]

)
=

(
am(1 − am)(bm − bm+1)

bm(bm−1am−1 − ambm+1)

)
, (38a)

7



J. Phys. A: Math. Theor. 42 (2009) 445207 R Droghei et al

respectively (
[am,H−]

[bm,H−]

)
=

( am

bm(1−am−1)
− am

bm+1(1−am+1)

am

1−am
− am−1

1−am−1

)
, (38b)

where the notation [A,B] denotes of course the standard Poisson bracket.
Note that these two Hamiltonian flows can be related by the transformation (36) which,

once rewritten in terms of the variables am and bm, reads

am → am, bm → 1

bm(1 − am)(1 − am−1)
. (39)

And let us also mention that it has been shown [12] that the two flows (38) are just the first ones
of two commuting hierarchies of flows, constructed via a recursion operator and its inverse,
and having as Hamiltonians the traces of the positive and negative powers of the same Lax
matrix.

Of course the first flow yields the equations of motion (16), while the second flow of
the RT system, corresponding to the Hamiltonian H−, yields, for the dependent variables
am ≡ am(τ) and bm ≡ bm(τ), the equations of motion

a′
m = am

[
1

bm(1 − am−1)
− 1

bm+1(1 − am+1)

]
, (40a)

b′
m = am

(1 − am)
− am−1

(1 − am−1)
, (40b)

to be again supplemented with the ‘boundary conditions’ (17c). But it is easily seen that the
dynamical system characterized by these equations of motion can be reduced to that considered
above, see (16), merely by a more convenient choice of variables, namely by introducing the
following ‘tilded’ variables:

ãm = exp(qm − qm+1)

[1 + exp(qm − qm+1)]
= am, (41a)

b̃m = − exp(−pm)[1 + exp(qm−1 − qm)]
1
2 [1 + exp(qm − qm+1)]

1
2

= − 1

bm(1 − am)(1 − am−1)
. (41b)

It is indeed easy to verify that the evolution yielded, for the canonical variables qm(τ) and
pm(τ), by the Hamiltonian H− entails, for the tilded variables ãm(τ ) and b̃m(τ ), just the same
equations of motion,

ã′
m = ãm(1 − ãm)(b̃m − b̃m+1), (42a)

b̃′
m = b̃m(b̃m−1ãm−1 − b̃m+1ãm), (42b)

yielded by the Hamiltonian H+ for the dependent variables am(τ) and bm(τ), see (16).
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